fbpx Skip to main content

Scientists Create Biodegradable Plastic Using Solar Energy

Scientists from Osaka Metropolitan University have found a way to synthesize fumaric acid, a raw material using for producing the biodegradable plastic polybutylene succinate, using artificial photosynthesis.  The plastic, typically made from petroleum, was synthesized from carbon dioxide, biomass-derived compounds, and solar energy.

The study, published in the journal Sustainable Energy & Fuels, documents the first time that fumaric acid has been successfully synthesized from carbon dioxide and sunlight. The research shows that fumaric acid can be made from carbon dioxide and biomass rather than petroleum.

“Toward the practical application of artificial photosynthesis, this research has succeeded in using visible light — renewable energy — as the power source,” Yutaka Amao, professor from the Research Center for Artificial Photosynthesis at Osaka Metropolitan University and study author, said in a statement. “In the future, we aim to collect gaseous CO2 and use it to synthesize fumaric acid directly through artificial photosynthesis.”

According to the authors, fumarate is typically synthesized from petroleum and emits high amounts of carbon dioxide when produced. The findings show promise in using solar energy and carbon dioxide rather than fossil fuels to produce this resource.

The team used solar energy to power a photoredox system, converting carbon dioxide and pyruvic acid, derived from biomass, into the fumaric acid via malate dehydrogenase and fumarase.

“Our work with this system was, to the best of our knowledge, the first example of achieving the fixation of CO2 to pyruvate using electron accumulation in NAD+ with light energy as well as the conversion of the resulting fixed pyruvate to an unsaturated dicarboxylate,” the authors said of the study.

The team’s success in using solar energy to synthesize fumaric acid shows promise in using artificial photosynthesis in the future to synthesize other beneficial macromolecules from carbon dioxide and relying less on fossil fuels.

Leave a Reply